Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression.
نویسندگان
چکیده
Hippocampal long-term depression (LTD) is a long-lasting decrease in synaptic strength that is most commonly studied at glutamatergic inputs to pyramidal cells in hippocampal area CA1. Activation of G-protein-coupled group I (including types 1 and 5) metabotropic glutamate receptors (mGluRs) by the pharmacological agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) elicits LTD in area CA1 of the hippocampus. Recent reports have shown that de novo protein synthesis is necessary for DHPG-induced LTD. However, relatively little is known about the signaling pathways that couple mGluRs to translation initiation. In this study, we investigated whether the activation of the phosphoinositide 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR) pathway, which has been shown to regulate translation initiation, is necessary for mGluR-LTD induced by DHPG. We found that brief incubations of mouse hippocampal slices with DHPG resulted in increased phosphorylation of Akt and mTOR in hippocampal area CA1. Two structurally unrelated PI3K inhibitors, LY294002 and wortmannin, blocked the DHPG-induced increases in phosphorylation of Akt and mTOR. Biochemical fractionation studies showed that the DHPG-induced increase in the phosphorylation of Akt and mTOR could be detected in synaptoneurosome preparations, and immunohistochemical analysis revealed that similar increases could be detected in both stratum pyramidale and stratum radiatum in area CA1. Finally, we observed that both PI3K inhibitors and rapamycin, an mTOR inhibitor, prevented mGluR-LTD induced by DHPG. Together, our findings indicate that activation of the PI3K-Akt-mTOR signaling cascade is required for mGluR-LTD and suggest that this pathway may couple group I mGluRs to translation initiation in hippocampal area CA1.
منابع مشابه
Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway
Objective(s): Eupafolin, a major active component of Eupatorium perfoliatum L., has anti-inflammatory and anti-oxidant properties. Lipopolysaccharide (LPS) is responsible for myocardial depression. A line of evidences revealed that LPS induces autophagy in cardiomyocytes injury. This study aims to evaluate the effects of eupafolin on LPS-induced cardiomyocyte autophagy...
متن کاملRegulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression.
Long-term depression (LTD) is an activity-dependent decrease in synaptic efficacy that can be induced in hippocampal area CA1 by pharmacological application of the selective group I metabotropic glutamate receptor (mGluR) agonist 3,5-diyhroxyphenylglycine (DHPG). Recent work has demonstrated that DHPG-induced LTD recruits at least two signal transduction pathways known to couple to translation,...
متن کاملHomer interactions are necessary for metabotropic glutamate receptor-induced long-term depression and translational activation.
Group I metabotropic glutamate receptors (mGluRs) induce a form of long-term synaptic depression (mGluR-LTD) in area CA1 of the hippocampus that requires rapid protein synthesis. Although much is known about the mechanisms underlying mGluR-LTD, it is unclear how mGluRs couple to the effectors necessary for translation initiation. A clue comes from work in the mouse model of Fragile X syndrome [...
متن کاملPotential protective roles of phytochemicals on glutamate-induced neurotoxicity: A review
Glutamate, as an essential neurotransmitter, has been thought to have different roles in the central nervous system (CNS), including nerve regeneration, synaptogenesis, and neurogenesis. Excessive glutamate causes an up-regulation of the multiple signaling pathways, including phosphoinositide-3 kinase/protein kinase B (PI3K/Akt), Akt/mammalian target of rapamycin (mTOR) protein, mitogen-activat...
متن کاملRoles of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling pathway in activity-dependent dendritic protein synthesis in hippocampal neurons.
Local protein synthesis in neuronal dendrites is critical for synaptic plasticity. However, the signaling cascades that couple synaptic activation to dendritic protein synthesis remain elusive. The purpose of this study is to determine the role of glutamate receptors and the mammalian target of rapamycin (mTOR) signaling in regulating dendritic protein synthesis in live neurons. We first charac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 28 شماره
صفحات -
تاریخ انتشار 2004